Abstract Convexity and Augmented Lagrangians

نویسندگان

  • Regina Sandra Burachik
  • Alexander M. Rubinov
چکیده

Convexity and Augmented Lagrangians Regina S. Burachik University of South Australia and University of Ballarat Workshop on Advances in Continuous Optimization Reykjavik, Iceland Friday June 30 and Saturday July 1, 2006

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On duality in nonconvex vector optimization in Banach spaces using augmented Lagrangians

This paper shows how the use of penalty functions in terms of projections on the constraint cones, which are orthogonal in the sense of Birkhoff, permits to establish augmented Lagrangians and to define a dual problem of a given nonconvex vector optimization problem. Then the weak duality always holds. Using the quadratic growth condition together with the inf-stability or a kind of Rockafellar...

متن کامل

Augmented Lagrangian Duality and Nondifferentiable Optimization Methods in Nonconvex Programming

Abstract. In this paper we present augmented Lagrangians for nonconvex minimization problems with equality constraints. We construct a dual problem with respect to the presented here Lagrangian, give the saddle point optimality conditions and obtain strong duality results. We use these results and modify the subgradient and cutting plane methods for solving the dual problem constructed. Algorit...

متن کامل

A Unified Augmented Lagrangian Approach to Duality and Exact Penalization

In this paper, the existence of an optimal path and its convergence to the optimal set of a primal problem of minimizing an extended real-valued function are established via a generalized augmented Lagrangian and corresponding generalized augmented Lagrangian problems, in which no convexity is imposed on the augmenting function. These results further imply a zero duality gap property between th...

متن کامل

Multipliers and general Lagrangians

We combine a Lagrangian approach inspired by convex and quasiconvex dualities with a penalization approach to mathematical programming. We use the ideas of abstract convexity. We focus our attention on the set of multipliers. We look for an interpretation of multipliers as elements of generalized subdifferentials of the performance function associated with a dualizing parameterization of the gi...

متن کامل

Penalty/Barrier Multiplier Methods for Convex Programming Problems

We study a class of methods for solving convex programs, which are based on nonquadratic Augmented Lagrangians for which the penalty parameters are functions of the multipliers. This gives rise to lagrangians which are nonlinear in the multipliers. Each augmented lagrangian is speciied by a choice of a penalty function ' and a penalty-updating function. The requirements on ' are mild, and allow...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007